Estimation in Misclassified Size-Biased Generalized Negative Binomial Distribution
نویسندگان
چکیده
In this paper, we are concerned with the situations, where sometimes value two is reported erroneously as one in relation to size biased generalized negative binomial distribution (SBGNBD) with probability αα. We have obtained the Maximum likelihood estimator and Bayes estimator under general entropy loss function. A simulated study is carried out to access the performance of the maximum likelihood estimators and Bayes estimators. Also comparison has been made between maximum likelihood estimator and Bayes estimator.
منابع مشابه
The Negative Binomial Distribution Efficiency in Finite Mixture of Semi-parametric Generalized Linear Models
Introduction Selection the appropriate statistical model for the response variable is one of the most important problem in the finite mixture of generalized linear models. One of the distributions which it has a problem in a finite mixture of semi-parametric generalized statistical models, is the Poisson distribution. In this paper, to overcome over dispersion and computational burden, finite ...
متن کاملEstimation of Parameters of Misclassified Size Biased Borel Distribution
A misclassified size-biased Borel Distribution (MSBBD), where some of the observations corresponding to x = c + 1 are wrongly reported as x = c with probability α, is defined. Various estimation methods like the method of maximum likelihood (ML), method of moments, and the Bayes estimation for the parameters of the MSBB distribution are used. The performance of the estimators are studied using ...
متن کاملMaximum Likelihood Estimation of the Negative Binomial Dispersion Parameter for Highly Overdispersed Data, with Applications to Infectious Diseases
BACKGROUND The negative binomial distribution is used commonly throughout biology as a model for overdispersed count data, with attention focused on the negative binomial dispersion parameter, k. A substantial literature exists on the estimation of k, but most attention has focused on datasets that are not highly overdispersed (i.e., those with k>or=1), and the accuracy of confidence intervals ...
متن کاملA Mixture of Generalized Negative Binomial Distribution with Generalized Exponential Distribution
The negative binomial distribution has become increasingly popular as a more flexible alternative to Poisson distribution, especially when it is questionable whether the strict requirements for Poisson distribution could be satisfied. But negative binomial distribution is better for overdispersed count data that are not necessarily heavy-tailed, for heavy tailed count data the traditional stati...
متن کاملExtended Conway-Maxwell-Poisson distribution and its properties and applications
A new four parameter extended Conway-Maxwell-Poisson (ECOMP) distribution which unifies the recently proposed COM-Poisson type negative binomial (COM-NB) distribution [Chakraborty, S. and Ong, S. H. (2014): A COM-type Generalization of the Negative Binomial Distribution, Accepted in Communications in Statistics-Theory and Methods] and the generalized COM-Poisson (GCOMP) distribution [Imoto, T. ...
متن کامل